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COMMENTS ON A PROBLEM OF CHERNOFF AND PETKAU

Michael L. Hogan

Columbia University

Abstract

5%

A new method is used to study the optimal stopping set corrected for discrete-
ness introduced by Chernoff and studied by Chernoff and Petkau. The discrete

boundary is asymptotically the optimal boundary for a Wiener process translated

downward by a constant amount. This amount is shown to be an Oexcess over
the boundary term, and this method yields it as a simple integral involving the

characateristic function of the random walk.

Key Words: Excess Over the Boundary, Optimal Stopping, Wiener Process,

Corrected Diffusion Approximations.
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This paper consists of an application of ideas about boundary crossing by ran-

dom walks to problems considered by Chernoff [1965], and Chernoff and Petkau

[1976]. In (2], a Bayes test for the sign of a normal mean leads, in the diffusion

' limit, to an optimal stopping problem for the Wiener process, whose solution can

be shown to be given by stopping the first time a Wiener process crosses a certain

boundary. The boundary is given as the solution to a free boundary problem. In

1l, the discrete version of the same problem is considered. Suppose stopping is

permitted only at times n6, n =- 0,1 . Once again it is possible to show that

optimal policy is to stop when the Wiener process crosses a certain boundary at
the permitted times. The question is: what is the relation between the boundary

i (t) of the unrestricted problem, and ib (t) of the restricted problem? Chernoff

showed that i6 (t) = i (f)+Z 61/2+0(6112), where, according to [1], Z -- -. 582.

The key step in the proof of this is to introduce an auxiliary problem in

which a Wiener process is started at a point (z, t), f <0, each observation costs

a dollar, no payoff is made if stopping occurs before time 0, and at t = 0 a payoff
Z2 l(Z<O) is received, and stopping is permitted only at times I = 0, -1. For

this problem the optimal stopping boundary can be shown to be increasing and

contained in [-1, 01, and therefore it has a limit as t --+ oo which turns out to be

zk.

In Chernoff and Petkau [1976] the solution to the auxiliary problem is con-

sidered for a family of dichotomous random variables depending on a parameter

p, and continuity of Z as a function of p is established, as well as .a method for

calculating Z when p is rational.

This comment is a result of a question of Professor David Siegmund after
Professor Chernoff's talk at the Kiefer-Neyman conference at Berkeley, June

1983. Professor Siegmund remarked that 2 = -ER, where R is a random
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variable whose distribution is the same as that of the asymptotic excess over

the boundary for the normal random walk (see below for precise definition).

Chernoff's analytic machinery, in particular the probabilistic interpretation of

the solution of a Wiener-Hopf equation (see Spitzer 11957, 19601) shows this to be

the case. The first part of this paper presents a more direct connection between

the role of Z as the expected asymptotic excess over the boundary, and Z as the

solution to the auxiliary problem. The second part identifies the quantity Z in the

auxiliary problem for arbitrary random walk with EIS113< oo, and establishes

the continuity as a function of p in Chernoff and Petkau's family of dichotomous

random variables A benefit of this method is that Z can be computed as a one

dimensional integral involving the characteristic function of SI.

Here is some notation that will be used in the proof of Theorem 1; however

be warned that due to the extremely heavy notational demands imposed by

Theorem 2 these definitions will only hold for the proof of Theorem 1. Let Si
be a random walk with ES = 0, E1 = 1, EIS113< oo. Let r. = inf{n:

a.,

S,, > a), Ra = Sr. - a, T+ = 0, and R be a random walk such that L(R) =
lima-.oo L(Ra), where L(X) denotes the distribution of the random variable X,

and where a -+ oo through numbers of the form nd if S1 is arithmetic with

span d. This limit is known to exist from renewal theory and it is also known

that lim,-.00 ERI = ER. It is easy to show that for nonarithmetic SI, ER -
ES2 ES"

while for arithmetic S1 with span d, ER = :- , as a --. co through

multiples of d. The limit as t --. o of the optimal boundary of the auxiliary

problem will be denoted Z. (An arithmetic random variable takes values in a

discrete subgroup of M.) A lattice is a coset of a discrete subgroup of R.

The auxiliary problem is as defined above, except that the random walk

generated by S1 is run rather than a Wiener process.
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Theorem 1. £-=

Remark. According to Siegmund [41, Chapter X
1 3 _1 1o0_ o ~ ~ t)t

- = ES 1 -- /0 t- 2Re log{2[1- IQ)]/t 2 }dt'

where Re denotes real part, and f(t) - EeitSl.

Proof. Suppose the optimal boundary is given by Z(y), and that the random

walk starts at time -no. Let T = inf{n : Sn > Z(n - no)}. Recall that the

same boundary is optimal regardless of starting position. Then, Chernoff and

Petkau show that the problem is equivalent to picking Z(y) to minimize

E(2T < o) + E(S2;r ,S )

Now, assume that S1 is nonlattice. A starting position can be chosen so that

Sn crosses Z(z) when IZ - 2 j< e, with probability > 1 - e. It is easy to

establish uniform integrability of S independent of starting position. Moreover,

a starting position can be picked so that Z is very much larger than the starting

position. The small variation of Z makes it clear that ST has approximately the

distribution Z + R. This can be made rigorous using simplified versions of an

.4 argument presented in Hogan [1841. Lemma 4.1 stochastically bounds ST2, and

the argument of Theorem 4.1 of that work establishes the statement about the

distribution of ST . The idea in this case is clear: the nearly constant boundary

Z can be replaced by the constant boundary 2. Therefore, by (1), the problem

is equivalent to minimizing

E*k + R 2 +

where q can be made arbitrarily small by a suitable choice of starting position.

The solution to this problem is to take , = -ER.
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In the arithmetic case, let d be the span of the distribution of S 1. A starting
position determines a lattice on which the random walk lives. Let A(k,) denote

the distance to the closest lattice value smaller than Z. Excess over Z - A(Z)

has a known asymptotic distribution. The problem is essentially to minimize

E( Z+Y) 2, where again Y is the excess over the optimal boundary. Now, though,

*. :Y + A(,) has the fixed, known limiting distribution L.(R). Consequently

E(' + y) 2 =E(Y +k' +A&(,k)- A(,)) 2

-E(Y + A(Z)- ER + ER + -A())
::' ---E(Y + A(k) - ER)2 + (ER _',-&('k))2.

The problem of minimizing this is equivalent to that of minimizing (ER + Z -
AI))2, as the first term is approximately constant, independent of Z. It is easy
to see that this is done by taking Z = -ER + d. The proof is finished by

observing that, by the arithmetic renewal theorem, ER - d ES$

Chernoff and Petkau consider the same stoppping problem for a family of

random walks generated by dichotomous random variables

S(pl _ p)1/ 2 = b(p) with probability p
SI "_"- - p)/p)2 -a(p) otherwise

ESr = 0, E(SP)2 = 1. It is possible to give a pathwise construction of this

process that shows that up to any stochastically bounded time t the process is

continuous in probability as a function of p, i.e., for a fixed Po, and for p close to

P0 the paths up to time t can be made arbitrarily close to those of p0 except for a

set of small probability. This seems reasonably clear so proof is omitted. Another

fact about these processes that should be noted is that SP is nonarithmetic iff p

5
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is irrational. Here is some notation that will be necessary:

=- inf(n : SP > 0) and by induction,

+
r-(") inf(i > TA"-:S > S ,)forn > 1,

=i7f(n : S-P _i 0n,

Tr= i.fr(n : SnP > e).

If p is irrational, r-- = i+ with probability 1, for P{SP - 0) = 0 Vn.

To simplify the notation quantities like E(Sf7t*) will be denoted E,(Sr+)
when this can be done unambiguously.

Theorem 2.
E sr+-p'+

EpS,+

is a continuous function of p.

Proof. Note first that, by the path continuity property, continuity is obvious
at a value of p for which PQr+ = r+P), i.e. p is irrational. In this case the

numerator and denominator are separately continuous. This accomplishes the

main purpose of Chernoff and Petkau's result, which is to show that a calculation
which can be done for p rational can be extended to irrational p by continuity.

Therefore, it suffices to establish continuity at some fixed, rational p.

The heuristic for why this works is that no amount of messing around near
zero and continuing by the random walk can affect the ratio considered here,

although numerator and denominator seperately can change. The simplest ex-

ample of this'phenomenon is

EoS, E,,S,"
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This will be used below. It is an example of the heuristic because to get from 7P?

to Tr the random walk hits at 0 and then goes on to perform an identical copy

of Pe. Formally
Epo(Sr) = Epe(S,; 7+ = 7+)

= Ep(Sr+) + P{(+ < r+)Epo(S,+),

or

Epo(ST ) = Ep, S+)
PpN{+ = r+)'

Similarly,

E ,( ) - _ ___ ___.: E, lSr+) ff p.{t+ = 'r+}

which establishes the claim.

The second example of this heuristic is

Ep(S,) = c() Ep Sr+ + 0(t)

and

E,(S2) =C(C) EP S72 + 0(c.

To see this write

Ep(S,) = E(Sr+; r+ = r,) +J E(S,.) P{S,+ E dz}

. E(S+)+ 00)+ E(S,+; re-z -r+ P{Sr Edz)

+ o E(Sr,, ) P(S,+ E dy)P(S,+ E dx)

E(Sr+) + 01(f) + (E(Sr) + 02(c)) PTc > T+)

+ J0E0  E(Sr_,_.) P(S,. E dz) P{Sr+ E dz)

7
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where Io1(,EI, Io2(')1< . Continuing in this manner establishes the claim with
c(f) = .f v (n")). Es2 follows analogously.

'~~-~-~---.'..-n= 1'. P*' > 'r4- - -r,-4.--- ~ -.

Now the result follows easily. The path continuity property makes it clear
~that

~~Convergence takes place as long as Ai > 0. For the other paths, S av is close

• .,., to zero, possibly above and possibly below. By these two observations"
"SqE E SP+ + E S9, fo~)PS x (~

where o(1} --,, 0 as q -s p, and E(S )2 satisfies a similar equation. The fact

about the ratios is now obvious.

~Here are some consequences of Theorem 1.

(1) (Part of 12), Theorem 3.3). 2 > -.

Proof. Since Sr+ < b,

ESr+ > b ESr+ b

where b -- b(p) as above. Jensen's inequality produces the upper bound

S< 2E-,+ <  - -)'

(2) If p k- , =_b ([2], Section 4, p. 882). For then -a > b and A is an

integer. Under these conditions it is easy to see that $r+ -- b. For p -- 'In.! n

an integer, Z-- also holds for a symmetric reason.
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